

Technology Opportunity

Glenn Research Center • Cleveland • Ohio

Technology Transfer & Partnership Office

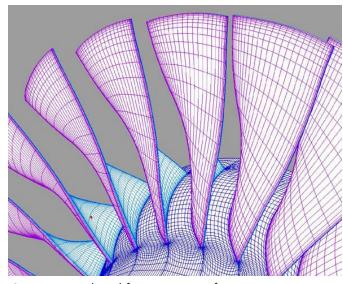
TOP3-00200

Three-Dimensional Analysis Codes for Turbomachinery

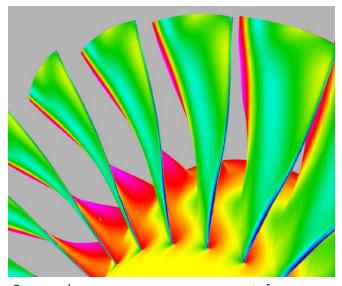
Technology

Three-dimensional (3–D) analysis codes for fans, compressors, turbines, and pumps.

Benefits


- Higher efficiencies
- Faster design cycle times
- Lower direct operating costs
- Improved reliability

Commercial Applications


- Axial compressors and turbines
- Centrifugal impellers
- Radial turbines
- Pumps

Technology Description

Three-dimensional computational fluid dynamics codes have been developed at NASA Glenn Research Center for the analysis of flows in turbomachinery. The codes have been validated and have been heavily used at NASA Glenn and in U.S. industries and universities for a wide variety of problems including analysis of the space shuttle main engine turbopumps, the design of transonic fan blades, and the analysis of pumps. The codes are fairly easy to use, fast, and reasonably accurate.

Computational grid for a transonic fan.

Computed pressure contours on a transonic fan.

Three-Dimensional Turbomachinery Analysis Codes

(a) Code descriptions

Code	Brief code description		
TCGRID	3–D grid generation code used with swift		
Swift	3–D multi-block viscous analysis code		

(b) Code descriptions

Detailed design and problem solving stage	Code requirements	Typical trade studies	Aerothermodyamic uses
TCGRID	Excellent accuracy; Fast affordable; User	Grid generation; Detailed blading;	Performance prediction; Pressure/thermal loads
Swift	friendly; Robust	Investigation of critical problem areas	

(c) Experience and time requirements

Code	Typical user experience	Typical time to learn	Set-up time	Typical times for an average case	Computer required	Where to obtain the code
TCGRID	High	~2 wks	< 1 day	~ minutes	PC, UNIX	GRC SR
Swift	High	~2 wks	< 1 day	~ hours	PC, UNIX	GRC SR

Options for Commercialization

The codes may be used to develop and enhance design tools for commercial application and can be acquired from our NASA Glenn Research Center Software Repository (SR) at

https://www.technology.grc.nasa.gov/software.

Contact

Technology Transfer & Partnership Office NASA John H. Glenn Research Center at Lewis Field Mail Stop 4-2

Cleveland, OH 44135-3191

Phone: 216-433-3484 Fax: 216-433-5012 E-mail: ttp@grc.nasa.gov

http://technology.grc.nasa.gov

References

LEW-16768-1

Key Words

Fans

Compressors

Turbines

Pumps

3-D analysis tools

Computational fluid dynamics

Grid generation